4

Basic Maths Course booklet

Algebra, precalculus and calculus for college and university students. Contains topics ranging from numbers to differentiation and intergration

ABOUT \& PRICING

About SOWISO

SOWISO offers:

- a homework, practice and learning environment;
- personalised feedback on all answer attempts;
- different testing and assessment tools;
- customisable mathematics courses with explanations, examples, and endless randomised practice exercises;
- an authoring tool to create original material;
- learning analytics giving detailed insight into student performance;
- integration with your LMS/VLE.

Our learning environment guides students along as they solve problems. When doing exercises, students can enter open answer calculations or mathematical formulas. The software will analyse their answer and provide targeted feedback and hints helping the student understand the next step in the solution process, and/or highlight any mistakes they made.

SOWISO increases student engagement and saves teachers time checking and grading!

Pricing

SOWISO partners with higher education institutions on a SAAS licensing basis.

The cost for the platform starts at $€ 5.50$ per student per year, with an additional per student per year fee of $€ 7.50$ per course.

A second licensing model is one in which students pay for their own license in our webshop.

COURSE STRUCTURE

Our digital courses are a fully interactive alternative for paper books and offer a personalised and adaptive learning experience that fits today's generation of students.

How are courses structured?

The courses are structured in chapters and subchapters consisting of units. The unit subjects are listed in more detail on the following pages.

Each unit consists of (at least) one theory page and one package of exercises.

Theory pages contain explanations, (randomised) examples and visualisations and (interactive) graphs.

The packages of exercises contain on average around 10 exercises. Each of these exercises are randomised, allowing for endless practicing, and include targeted hints and personalised feedback for the students while solving the exercises.

COURSE CONTENT

Chapter 1: Numbers (17 topics)

1. Integers (3 topics)
a. Calculating with integers
b. Integers
c. Division of integers
2. Negative numbers (1 topic)
a. Absolute value
3. Fractions (7 topics)
a. Fractions
b. Equivalent fractions
c. Simplifying fractions
d. Addition and subtraction of fractions
e. Multiplication and division of fractions
f. Integer powers of fractions
g. Decimal numbers
4. Powers and roots (6 topics)
a. Exponents
b. Calculating with powers
c. Roots of integers
d. Roots of fractions
e. Standard notation of higher roots
f. Order of operations for powers and roots

Chapter 2: Algebra (27 topics)

5. Variables (5 topics)
a. Variables
b. Sum and product of variables
c. Substitution
d. Simplification
e. Simplification with algebraic rules

PRACTICE \& THEORY EXAMPLE

Quadratic equations: Solving quadratic equations

Q Solving quadratic equations by factorization

Solving the following equation by means of factorization can be done in steps. Drag the steps in the correct order.

$$
-2 \cdot t^{2}-22 \cdot t+63=79-10 \cdot t
$$

The center column shows the steps in words, the right column shows the equation after the step is applied.

step 1	left hand side factorized	$t+2=0 \vee t+4=0$
step 2	$A \cdot B=0$ gives $A=0 \vee B=0$	$-2 \cdot t^{2}-12 \cdot t-16=0$
step 3	constant terms to the right hand side	$t^{2}+6 \cdot t+8=0$
step 4	reduce to 0	$(t+2) \cdot(t+4)=0$
step 5	divided by -2	$t=-2 \vee t=-4$

Practise example

Trigonometry: Angles with sine, cosine and tangent

Angles in radians

So far we have expressed angles in degrees, but in mathematics angles are often expressed in radians. To introduce radians we will use a circle with radius 1 . We call this the unit circle.

Unit circle

The unit circle is a circle with origin center $[0,0]$ and radius 1 .

The point $P=\left[x_{P}, y_{P}\right]$ starts at $[1,0]$ and moves counterclockwise across the unit circle. The angle of rotation is called α.

Therefore $\sin (\alpha)=y_{P}$ and $\cos (\alpha)=x_{P}$.
In this way we can also define angles greater than 90° degrees with the sine and the cosine.

6. Calculating with exponents and roots (8 topics)
a. Integer powers
b. Calculating with integer exponents
c. Positive integer exponents
d. Square roots
e. Calculating with square roots
f. Higher degree roots
g. Calculating with fractional exponents
h. Order of operations
7. Expanding brackets (2 topics)
a. Expanding brackets
b. Expanding double brackets
8. Factorization (2 topics)
a. Factoring out
b. Factorization
9. Notable products (2 topics)
a. The square of a sum or a difference
b. The difference of two squares
10. Adding and subtracting fractions (8 topics)
a. Fractions
b. Simplifying fractions
c. Addition and subtraction of like fractions
d. Making fractions similar
e. Addition and subtraction of fractions
f. Multiplication of fractions
g. Division of fractions
h. Fraction decomposition

Chapter 3: Linear formulas and equations (13 topics)

11. Formulas (3 topics)
a. Formulas
b. Dependent and independent variables
c. Graphs

THEORY \& EXERCISE EXAMPLE

- ○ -

Quadratic equations: Parabola

Parabola

Graph

The graph of a quadratic

$$
y=a x^{2}+b x+c
$$

is called a parabola.
If $a>0$ the graph is an upward opening parabola.
If $a<0$ the graph is a downward opening parabola.
An upward opening parabola has a minimum and downward opening parabola has a maximum. In both cases, this point is referred to as the vertex of the graph.

The parabola is symmetrical about the vertical line through the top of the graph. Such a line is also called a line of symmetry.

Theory example

Algebra: Adding and subtracting fractions

Addition and subtraction of fractions

Put over a common denominator, expand all brackets in the numerator and simplify as much as possible:

$$
\frac{p}{p-8}+\frac{1}{p+8}
$$

8 Hint

First put the fractions over the same denominator.
$\frac{p}{p-8}+\frac{1}{p+8}=$
12. Linear functions (4 topics)
a. Linear formula
b. Slope and intercept
c. Composing a linear formula
d. Parallel and intersecting linear formulas
13. Linear equations and inequalities (6 topics)
a. Linear equations
b. The general solution of a linear equation
c. Intersection points of linear formulas with the axes
d. Intersection point of two linear formulas
e. Linear inequalities
f. General solution of a linear inequality

Chapter 4: Systems of linear equations (8 topics)

14. An equation of a line (4 topics)
a. A linear equation with two unknowns
b. Solution of linear equations with two unknowns
c. The equation of a line
d. Composing the equation of a line
15. Two equations with two unknowns (4 topics)
a. Systems of linear equations
b. Solving systems of linear equations by substitution
c. Solving systems of equations by elimination
d. General solution system of linear equations

Chapter 5: Quadratic equations (13 topics)

16. Parabola (2 topics)
a. Quadratics
b. Parabola
17. Solving quadratic equations (4 topics)
a. Quadratic equations
b. Solving quadratic equations by factorization
c. Solving quadraticequationsbycompleting the square
d. The quadratic formula

THEORY EXAMPLE

- ○○

Differentiation: Applications of derivatives

Extreme values

Maxdma and minima

The highest value of a part of a graph is called a local maximum.

The lowest value of a part of a graph is called a local minimum.

Both are extreme values of a function.

Extrema are function values \vee Global maxima and minima

Using the derivative, we can easily calculate the extreme values of a function.

Extreme volue

If a function $f(x)$ has a local maximum or minimum
at $x=c$ then $f^{\prime}(c)=0$.

Example

$$
\begin{aligned}
f(x) & =x^{2} \\
f^{\prime}(x) & =2 x \\
f^{\prime}(0) & =0
\end{aligned}
$$

Calculating extreme values

Step-by-step

Determine the extreme values of a function $f(x)$. Determine for each extreme value whether it is a local minimum, local maximum or neither.

Step 1 Calculate the derivative $f^{\prime}(x)$

Step 2 Solve $f^{\prime}(x)=0$ to find the x coordinates of the points which are possibly an extreme value.

$$
f^{\prime}(x)=4 x^{3}-4 x
$$

Example

$$
f(x)=x^{4}-2 x^{2}
$$

$$
\begin{aligned}
4 x^{3}-4 x & =0 \\
x & =0 \vee 4 x^{2}-4=0 \\
x & =0 \vee x^{2}=1 \\
x & =0 \text { Theory example }
\end{aligned}
$$

> 18. Drawing parabolas (4 topics)
> a. Intersection of parabolas with the axes
> b. Vertex of a parabola
> c. Drawing of parabolas
> d. Transformations of parabolas
19. Intersection points of parabolas (2 topics)
a. Intersection points of a parabola with a line
b. Intersection points of parabolas
20. Quadratic inequalities (1 topics)
a. Quadratic inequalities

Chapter 6: Functions (25 topics)

21. Domain and range (5 topics)
a. Function and formula
b. Function rule
c. Intervals
d. Domain
e. Range
22. Power functions (3 topics)
a. Power functions
b. Transformations of power functions
c. Equations with power functions
23. Higher degree polynomials (5 topics)
a. Polynomials
b. Equations with polynomials
c. Solving higherdegreepolynomialswith factorization
d. Solving higher degree polynomials with the quadratic equation
e. Higher degree inequalities

Integration: The definite integral

Area

Statement

The area of the surface V above the x-axis and bound by the graph of f, the lines $x=a$ and $x=b$ is equal to:

$$
\int_{a}^{b} f(x) \mathrm{d} x
$$

We have now seen how to calculate the area of a surface above the \boldsymbol{x}-axis, but in the same manner we can calculate a surface below the x-axis.

```
Statement
```


-••

Linear formulas and equations: Linear equations and inequalities

Linear equations

Find the unique value of x for which $8 \cdot x-6=-6$ is true.
Give your answer in the form $x=\ldots$ and simplify as much as possible.

8 Hint

Remember to first subtract -6 on both sides of the equation.
$8 \cdot x=-6-6$ (No, on the right-hand side, you have subtracted 6 , but you should have added it.
$8 \cdot x=-6+6$ Eliminate each of the additions and subtractions on the right.
24. Power functions and root functions (5 topics)
a. Root functions
b. Transformations of root functions
c. Root equations
d. Solving root equations with substitution
e. Inverse functions

25. Fractional functions (7 topics)

a. Asymptotes and hyperbolas
b. Power functions with negative exponents
c. Transformations of power functions with negative exponents
d. Linear fractional functions
e. Linear fractional equations
f. Inverse of linear fractional functions
g. Quotient functions

Chapter 7: Exponential functions and logarithms (13 topics)
26. Exponential functions (3 topics)
a. The exponential function
b. Exponential equations
c. Transformations of the exponential function
27. Logarithmic functions (10 topics)
a. The logarithmic function
b. Logarithmic equations
c. Exponential equations
d. Isolating variables
e. Rules for logarithms
f. More logarithmic equations
g. Change of base
h. Solving equations using substitution
i. Graph of logarithmic functions
j. Transformations of the logarithmic function

Chapter 8: Trigonometry (12 topics)

28. Angles with sine, cosine, and tangent (8 topics)
a. Angles
b. Triangles
c. Rules for fight-angled triangles
d. Angles in radians
e. Symmetry in the unit circle
f. Special values of trigonometric functions
g. Addition formulas for trigonometric functions
h. Sine \& cosine rules
29. Trigonometric functions (4 topics)
a. Trigonometric functions
b. Transformations of trigonometric functions
c. Inverse trigonometric functions
d. Trigonometric equations

Chapter 9: Differentiation (20 topics)

30. The derivative (4 topics)
a. The differene quotient
b. The difference quotient at a point
c. The tangent line
d. The notion of derivative
31. The derivative of power functions (1 topic)
a. The derivative of power functions
32. Sum and product rule (2 topics)
a. The sum rule
b. The product rule
33. Chain rule (2 topics)
a. Composite functions
b. The chain rule
34. The derivative of standard functions (4 topics)
a. The derivative of trigonometric functions
b. The base e and the natural logarithm
c. The derivative of the natural logarithm
d. Thederivative ofexponentialfunctionsandlogarithms
35. The quotient rule (1 topic)
a. The quotient rule
36. Applications of derivatives (6 topics)
a. Increasing and decreasing
b. Extreme values
c. The second derivative
d. Types of increasing and decreasing
e. Inflection points
f. Higher order derivatives

Chapter 10: Integration (17 topics)

37. Antiderivatives (5 topics)
a. The antiderivative of a function
b. The antiderivative of a power function
c. Rules of calculation for antiderivatives
d. Antiderivatives of known functions
e. Antiderivatives and the chain rule
38. The definite integral (5 topics)
a. Definite integral
b. Area
c. Area of a surface between curves
d. Area between curves
e. Solid of revolution
39. Integration techniques (7 topics)
a. Substitution method
b. Trigonometric integrals
c. Integration by parts
d. Repeated integration by parts
e. Known antiderivatives of some quotient functions
f. Long division with polynomials
g. Finding the antiderivatives of quotient functions

Missing something? SOWISO allows teachers to create their own content in our authoring environment.

THEORY EXAMPLE

000

Linear formulas and equations: Linear equations and inequalities

Intersection point of two linear formulas

We have seen how to solve a linear equation. With this same technique we can also determine the coordinates of the intersection points of two linear formulas.

Example
We consider the linear formulas $f: y=2 \cdot x+5$ and $g: y=-3 \cdot x-4$. We can find the x-coordinate of the intersection point by solving the equation
$2 \cdot x+5=-3 \cdot x-4$. This is done in the following manner:

$$
\begin{aligned}
& 2 \cdot x+5=-3 \cdot x-4 \\
& 5 \cdot x+5=-4 \\
& \text { the equation } \\
& 5 \cdot x=-9 \\
& \text { both sides plus } 3 \cdot x \\
& x=-\frac{9}{5} \text { both sides minus } 5 \\
& \text { both sides clvided by } 5
\end{aligned}
$$

Hence, the \boldsymbol{x}-coordinate of the intersection point is $\boldsymbol{x}=-\frac{9}{5}$.
we can find the y-coordinate by substituting $x=-\frac{9}{5}$ in one of the formulas. This gives us:

$$
y=2 \cdot-\frac{9}{5}+5=\frac{7}{5}
$$

Hence, the coordinates of the intersection point are
 $\left[-\frac{9}{5}, \frac{7}{5}\right]$.
sowiso.com
info@sowiso.com
+3120 7520000

Science Park 402 1098XH Amsterdam The Netherlands

