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7. Applications (1 topic)
a. Applications of functions

Chapter 2: Operations for functions (15 topics)

8. Inverse functions (4 topics)
a. The notion of inverse function
b. Injective functions
c. Characterizing invertible functions

9. Exponential and logarithmic functions (6 topics)
Exponential functions

. Properties of exponential functions
Growth of an exponential function

. Logarithmic functions

Properties of logarithms

Growth of a logarithmic function
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10. New functions from old (4 topics)
a. Translating functions
b. Scaling functions
c. Symmetry of functions
d. Composing functions

1. Applications (1 topic)
a. Applications of operations for functions

Chapter 3: Introduction to differentiation (7 topics)

12. Definition of differentiation (2 topics)
a. The notion of difference quotient
b. The notion of derivative

13. Calculating derivatives (1 topic)
a. Derivatives of polynomials and power functions

14. Derivatives of exponential functions and logarithms
(3 topics)



EXERCISE EXAMPLES

¢ Feedback

Calculate the derivative A’ () of h(z) =7 - sin(8 - z).

h'(z) =7-cos(8" x) ® No, you may have forgotten to multiply by ¢’ (z). in which g(z) = 8 - z.

The chain rule indicates that the derivative contains f'(g(z)). in which
h’(z) =7-cos(56 - x) ® f(z) = 7-sin(x) and g(z) = 8 - . Thus, the the argument of the cosine
must be equal to g(x). This is not the case in your answer.

h'(z) =56 - cos(8 - z) +  Greatjob
Practise example

Linear formulas and equations: Linear equations and inequalities

¢ Linear equations

Find the unique value of « for which 8 - ¢ — 6 = —6 is true.
Give your answer in the form & = ... and simplify as much as possible.
@ Hint ~

Remember to first subtract —6 on both sides of the equation.

8:x=—-6-6 ® No, on the right-hand side, you have subtracted 6, but you should have added it.

8. xz=—-6+6 Eliminate each of the additions and subtractions on the right.
= v Correct answer
s N N ™
next > | #Astop ) | Credo ) ( ?askquestion ) .
N N N -~ Practise example
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a. The natural exponential function and logarithm

b. Rules of calculation for exponential functions and
logarithms

c. Derivatives of exponential functions and logarithms

15. Applications (1 topic)
a. Applications

Chapter 4: Rules of differentiation (9 topics)

16. Rules of computation for the derivative (6 topics)
a. The sum rule for differentiation
b. The product rule for differentiation
c. The quotient rule for differentiation
d. The chain rule for differentiation
e. Exponential functions and logarithmic derivatives
revisited
The derivative of an inverse function

—+

17. Applications of derivatives (3 topics)
a. Tangent lines revisited
b. Approximation
c. Elasticity

Chapter 5: Applications of differentiation (5 topics)

18. Analysis of functions (3 topics)
a. Monotonicity
b. Local minima and maxima
c. Analysis of functions

19. Higher derivatives (1 topic)
a. Higher derivatives

20. Applications (1 topic)
a. Applications of differentiation



THEORY EXAMPLE

Rules of differentiation: Applications of derivatives

[ Elasticity

It is now clear that the derivative of a function is a measure for the absolute (instantaneous) rate of change
of the function. But you can also consider the relative (proportional) rate of change. This is often used in
economic analysis like: the Gross Domestic Product (GDP) of Greece increased by 0.5%. Especially in issues of
pricing, we are interested in the relative (percentual) reduction in demand in relation to the relative
(percentual) increase in price. In general, we define the relative change of a function as follows.

Elosticity

For a positive differentiable function f(z) the elasticity, or relative rate of change, for z > 0 is defined
as:

T
EL f(z) = f'(z) - =
f(=)
More v
We will illustrate this basic economic concept of elasticity by means of an example.
Example

]
One day, a motorist pays 2.50 dollars each time he uses the ferry. The number g of times motorists
use the ferry one day, can be modeled very well as ¢ = d(p), where d is the quadratic demand function

d(p) =100-p* —8.p+ 16
Here pis the price (0 < p < 4).

The skipper of the ferry is considering an increase of the rate, because he hopes to increase his income.
Possibly some motorists will now stay away from the ferry because of the increased costs. Therefore,
the skipper would like to compare changes in the variables associated with p and gq.

How can he do that?

Solution
For calculating the result of the increase in the rate by 0.25 dollars to the demand, the skipper can use
the difference quaotient:

ag _ d(2.75) — d(2.50)

Ap 0.25
_100-(2.75)* — 8- -(2.75) + 16 — 100 - (2.5)* — 8 - -(2.5) + 16
- 0.25
= —275.00

In fact, the difference quotient that is used here is the quotient of two absolute char
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Chapter 6: Multivariate functions (9 topics)

21. Basic notions (4 topics)
a. Functions of two variables
b. Functions and relations
c. Visualizing bivariate functions
d. Multivariate functions

22. Partial derivatives (4 topics)
a. Partial derivatives of the first order
b. Chain rules for partial differentiation
c. Higher partial derivatives
d. Elasticity in two variables

23. Applications (1 topic)
a. Applications of multivariate functions

Chapter 7: Optimization (7 topics)

24. Extreme points (6 topics)

. Stationary points

. Minimum, maximum and saddle point
Criteria for extrema and saddle points
. Convexity and concavity

Criterion for a global extremum
Hessian convexity criterion
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25. Applications (1 topic)
a. Applications of optimization

Chapter 8: Constrained optimization (5 topics)

26. The Lagrange multiplier method (3 topics)
a. Lagrange multipliers
b. Lagrange multiplier interpretation
c. Lagrange’s theorem



27. Sufficient conditions for optimality (2 topics)
a. Convexity conditions for global optimality
b. Second-order conditions for local optimality

Missing something? Bolster Academy allows teachers to
create their own content in our authoring environment.

THEORY EXAMPLE

Constrained Optimization: The Lagrange multiplier method

[ Lagrange multiplier interpretation

» In order to understand the Lagrange multiplier, we will consider the constraint optimization problem as
one of a series of constraint optimization problems, parameterized by ¢

Optimal value function

Let f(z,y) and g(z, y) be bivariate differentiable functions. For each real number ¢ in an open interval
I around 0, consider the constraint optimization problem

max (min)  f(z,y) subjectto  g(z,y) =¢

Suppose that [z* (¢), y" (¢), X" (¢)] are stationary points of the Lagrangian with constraint function
g(z,y) — c for arbitrary cin I. Assume, moreover, that =" (¢) and y* (¢) are differentiable functions of ¢
on I. Then we call

* f*(e) = f(z*(c),y" (c)) the optimal value function for the constraint problem g(z, y) = 0, and
* A*(e) the corresponding multiplier function.

Statienary point

This gives an intuitive meaning to the Lagrange multiplier A as the rate at which the optimal value of the
objective function f changes with respect to changes in the constraint constant e. This is captured by the
following result:

Multiplier function theorem

If the Lagrange multiplier A for a constraint optimization problem with objective function f(z,y) and
constraint g(z, y) = 0 has a differentiable optimal value function f*(¢) on an open interval I around 0
corresponding to a stationary point [2g, Yo, Ao] of the Lagrangian, then the corresponding multiplier
function A" (c) satisfies the equation

df
A'(c) = dfc

In particular, we have Ay = A" (e) = f(0) and, for small values of ¢, Theory example
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